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Abstract.

The paper is the second in the series devoted to the study of construc-

tions of families of homogenizations. In the first paper (S1 the properties

of the kernel 0(.,h,t) were utilized. In this paper these properties are

established.



1. Introduction.

In (8] we developed an integral representation of the solution to a

differential equation that models the equations that arise in the study of

periodic media (e.g., composite materials). The elliptic differential equa-

tion studied in [81 is

n x h xh
- --(a ()---(x) + a.(x)h (x) = f(x)pp-- x_ pq h clx qo

p,q=1 p' q

on Rn, in which apq and a0  are real-valued 27r-periodic functions and h

is a given positive number. An alternate proof of the classical homogeniza-

h
tion result (the limit of u as h-O) was given in [8], based on the

h
Integral formula for u that was developed there

The integral representation of uh  depends on the 2w-periodic function

0(.,h,t) that satisfies

n

-e -It- a (ap(y)g a ((y,h,t)e hty))+ h 2aO(y)O(y,h,t) = h2

p,q=l P

on{ n l n.
on {y : ly I < u}, in which t E R . The main emphasis of [7] was

h
placed on the function u ; the properties of 0 that were needed there were

stated without proof. This paper presents an analysis of 0 in order to

prove these claims, namely, Lemmas 1 and 12 in [8]. Theorem 1 in this paper

is equivalent to Lemma 1 in [8], whereas the content of Lemma 12 and the dis-

cussion preceding it in (8] is contained in Theorems 16 and 18 here.

In section 2, the notation used here and the equation that 0(.,h,t)

satisfies are given along with the statement of Theorem 1. The proof of

Theorem 1 Is presented in section 3. The expansion of 0(-,h,t) in powers of

h and properties of this expansion are developed in section 4. Section 5 is



devoted to developing several analyticity results associated with families of

sesquilinear forms. The results of section 5 are used extensively in section

3. Additional details and references can be found in [7].

A method for systematically developing classes of differential equations,

or even pseudodifferential operators, that describe the behavior of composite

materials with a periodic structure has been introduced in [3] and is based on

the results of [8] and this paper.

2. Notation and statement of the problem.

Let S a 4y a (yl'''',Yn) e Rn : iYk t < for k = 1,..., n}, and for

j = 0,1, denote the standard Sobolev norm on S by 'I.. In addition,

define 1'{I by IVl I a }Ia (Y y) 11
dein II~by1v1 *Ifs n 1v ay)Id) The Sobolev spaces of

SP= p

periodic functions for which S is the fundamental period, is denoted by

Hi (S), and is defined to be the completion with respect to 1111, of th
per J,

complex-valued, CO-functions on Rn that are 21r-periodic in each coordinate

variable.

Let apq, for p,q = 1,...,n, and a0  be real-valued, 2n-periodic,

L -functions defined on R n . Furthermore, assume a = a and that there
W qp pq

exist positive constants 70  and 31 such that

ao(x) To and

(1) I a (X)qN p 1n T2 for all E C,
p,q= p= I

almost everywhere on Rn. For each h e C and t . Cn define the sesqui-

linear form 0(h,t): H (S)xH 1e(S)--C by
per per

2



n

(2) (h,tl[,v] a (y)-( (y)ehty 8 -ehty

Pqq

+h2ao(Y)O(y)v(y) Y.

In section 3 we will prove

Theorem 1. There exists a neighborhood G of Rn+ l (contained in Cn+),

such that a unique function (-,h,t) H 1(S) exists for each (h,t) e
per

and satisfies

(3) h(h,t)[(. h,t),v] =h2[v-7dy for all vEH I (e).per "
S

Furthermore, the mapping

(4) HhtF-¢.ht 1 H~(S)
per

is holomorphic on G (see Definition 19, section 5).

In the proof of Theorem 1, the following eigenvalue problem will be con-

sidered: seek A(h,t) e C and a non-zero function 0(.,h,t) e H1 (S) suchper

that

(5) 0(h,t)[O(-,h,t),v1 = A(h,t) 0(y,h,t)vTydy for all v E H1 (S).per

Before proceeding to the proof of Theorem 1, we give two lemmas that we will

use repeatedly.

Lemma 2. A constant C0  exists such that

C 0(1+ltI)Ivl 1 jv 1  0 C(+tjjvj1

1 n
for all v e H (S), the standard Sobolev space, and for all t e Rn , where

3



2 2t 2atII t + .. . +t n

Proof. The proof of the right-hand Inequality is straight-forward. The ine-

quality on the left is proved by applying the right-hand inequality to the

it .y.function w = ve

Ivll = lwe- ItY 11 1 : C0(1+ltll )lwi 1 . 0

Lemma 3. Let H be a complex Hilbert space with norm IlH and inner

product (,") H' and let 0 : HxH--+C be a sesquilinear form (i.e., C[,v]

is linear In 0 and conjugate-linear In v). If there exist constants M

and 7 such that

I010,v1l :5 M1I¢IIHUIIl H

and

7tlvll 2  < I0[v, V]

for all 0 and v In H, then for each f e H , the space of bounded

conjugate-linear functionals on H, there is a unique 0 E H such that

@[0,v] = f(v) for all v e H.

Moreover, 11H < 1 fIfUH.
HH

Lemma 3 is known as the Lax-Milgram theorem (see [2]). The essense of

the proof of Lemma 3 is the existence of a bounded operator A that maps H

Isomorphically onto H such that 0[o,v] = (AO,v)H for all € and v in

H. This fact will be used in the proof of Theorem 22, in section 5.

4



3. Proof of Theorem 1.

The ideas and results of section 5 will be used extensively in this

section. Note that HO(S) and H' (S) satisfy the conditions Imposed on
per per

H and V, respectively, In section 5, I.e., H1 (S) is a continuously,
per

densely, and compactly embedded subspace of H0  (S). (A discussion of spacesper

of periodic functions is contained in [1].) Clearly, (h,t) e Cn+i -

0(h,t)(O,v] e C is an analytic function for each 0 and v in H (S).
per

We start here by determining an open set G c Cn + l such that Rn + l c G

and such that 0(h,t) satisfies inequalities similar to (34) and (35) for

each (h,t) e G. Then we will show that, in the sense of (5), 0 is not an

eigenvlaue of O(h,t) when h * 0 and (h,t) e R , but that 0 is a

simple elgenvalue of 0(0,t). The conclusions of Theorems 26 and 27 in

section 5 get us part of the way through the proof of theorem 1; we must

Investigate firther the eigenvalue problem associated to 0(0,t).

Lemma 4. There exists an open set G c Cn + l and real-valued functions M,y,

and p such that p is continuous on G and for each (h,t) e G, M(h,t) >

0, 7(h,t) > 0,

I) i0(h,t)(,v]i 5 M(h,t)i011 11vi ! for all 0 and v in Hpr(S),

and

11) T(h,t)jjvl1 2 Re(-(h,t)[v,v])+p(h,t)jvlt0  for all v e Hper(S).

Moreover, G can be chosen so that Rn+l c G and so that (h,t) e G when-

ever (h,t) e G.

Proof. For each z e Cn and 0 and v in H (S), define the sesqui-
per

linear form

n

B(z)[6,v] = J a (Y) (€(y)eiZ'Y) (v.e-iZ'Y)dy;

Sp,q=l

5



thus, (h,t)[f,vj = B(ht)[O,v] +h 2'Sao(y)O(y)v-(dy. Whenever it is conven-

lent in this proof, we will use ht = p+ io" where p and o are real

n-vectors. Defining

F(p,o)[,v] = B(p+ioi ).v] -B(p)(#,v]

IS n ax(y) (a- a - ( O( y ) e l p *Y ) v- -- e - i p ' y

f : Z pq qp,q-1

- q (y)e P'Ya-(-e-lP*Y) - 0qopO(y)vy}dy

it follows, since each a is an L -function, that there exists a constantpq

K such that

(6) IF(p,o)([ ,v] I < KIIol(1+110")lljOIe 1P 'Y11 lve P'¥1111

In addition, there Is a constant K' such that

IB(p)([,vJl < K'e IP'Y 1 Ive
1 1.-

Using Lemma 2 and the fact that a0  is bounded, it follows that there exists

a positive number M(h,t) for each (h,t) C n +  such that (1) is true.

Next a consequence of (1) is that

B(p)[v,v] a 7lIve lpy
12

and therefore

(7) Re(B(p+Iol)[v,v]) + lVIIv 2 = B(p)[v,v] +Re(F(p,a)[v,v1) + 7 llVII 2

> 1 - KIIoiI (1+loil))llveiP'y 2II2

We now define G by

:(ht) KIlIm(ht)II(1+llIm(ht)Il) < -}

6



and set

z(h, t) = 2 2
2C 0( 1+I Re (ht) II )

in which CO  is defined in Lemma 2. Finally, setting K" = laOI L (S) and

using (7) and Lemma 2, we conclude that

Re((ht)[v,v]) + Ii 2ReCHV(h,

= Re(B(ht)[v,vl) +Re(h2f a Io(y)v(y)1 2 dy) + 2111v,12

"S

:5 (h, t) jvjl 2  _ V I h 1211VIIo2
2 22

for (h,t) e G, which yields (1i) with p(h,t) = K"IhI2 +l. V

For each (h,t) c G, we can associate to 0(h,t) a closed operator

T(h,t) as in Theorem 22:

0(h,t)[O,v] = (T(h,t)o,v) for all v e H1 (S)
H 0 r(S) per
per

and for all 0 in the domain of T(h,t), which is a dense subspace of

H 1r(S). Reference is made to T(h,t) In the next few paragraphs in order to
per

draw upon the results of section 5.

For each (h,t) e Rn +l, a direct consequence of () and lemma 2 is

ih~y2 2 min{ 'oh2 ' Ii 2

(8) 4(h,t)tvj a 71tve
ih t y j2 +' 0h 

2 IvI 2 a 2C 0ht1II 2

1 1 0 0 2C02( l+1 (htlj) 2

0

for all v e H1 (S). If (h,t) E Rn + l and h * 0, then the hypotheses of
per

Lemma 3 are satisfies; hence 0(h,t)[0,v] = f w(y)vTydy for all v E

HI (S), is uniquely solvable for each w e HO(S). Consequently, 0 is in
per per

the resolvent set of T(h,t), and by Theorem 26, {(h,t) e Rn + 1 : h * 0} is

7



contained In an open set in Cn+1 on which (4) Is holomorphic.

Now let h = 0. For any T e Rn (or Cn), we have from the first

Inequality In (8) that

O(0,T)[v,v] 2 1 iyI 
2

1 V

If 0 is an elgenvalue of (0,T) with 00 e H (S) being an associated
per

elgenfunction, then

0 = [0,T)[0 0 ,001 aI11011,

and consequently, @0 Is a constant function, which depends on T. There-

fore, 0 is an elgenvalue of (the associated closed operator) T(0,T), and

00 is the only elgenfunction associated to 0. There are no generalized

elgenfunctions when r E Rn because the identity OC0,T)[v,O] = (0,T)[V,v]

implies, by Corollary 25, that T(0,T) Is selfadjoint.

The following conclusions can now be drawn from Theorem 27. For each

nT E R , there exists a neighborhood G c G of (0,T), and there exists a

complex valued function A, aralytic on GT, sucht hat X(Ot) = 0 for

(0,t) e G A and such that A(h,t) is a simple elgenvalue of 4(h,t) when

(h,t) e G. Furthermore, there exist two holomorphic functions (h,t) e G TT

P(h,t) and (h,t) E G '--R 2(0,h,t), with values in the space of bounded

linear operators that map H0 (S) into H'(S), such that P(h,t)
per per

projects H0  (S) onto the 1-dimensional eigenspace spanned by the elgen-
per

vector associated to A(h,t), and such that

()h 
2  h2ROh

(9) (-,h,t) =)hht)+h R2 (ht)

for each (h,t) e G for which A(h,t) * 0. Here 1 Is the constant func-

tion that takes on the value 1 on S. Note that A(h,t) Is not identically

0 on G since 0 Is not an eigenvalue of *Ch,T) when h is a non-zero
T



real number; therefore, this representation of 0(-,h,t) is meaningful.

Clearly, the holomorphy of (h,t) -- (.,h,t) on G is completely
h h slT

determined by that of - We will show that has an analytic
A~h, tTXh, tT

continuation to h = 0, and that there is a suitable restriction G' of G

on which A(h,t) = 0 If and only if h = 0. This will be done by determining

part of the Taylor expansion of A(h,t) In powers of h about h = 0, where

it will be seen that the coefficient of hk  is 0 for k = 0,1.

For the moment, we assume the existence of a function w, analytic on

G, such that

(10) A(h,t) = hw (h,t) for (h,t) E G .

Letting 0(.,h,t) E H 1(S) be the eigenfunction associated to A(h,t) as in
per

(5), the first inequality in (8) yields

02jj( ,h,t)112 < (h,t-l[O(t,h,t),V(.,h,t)] = A(h,t)2lj(-,h,t)}j

~ n+i n+1
for (h,t) e GT  R . Consequently, w(h,t) 0 0 for (h,t) e GT n Rn

and by continuity, there is an open set G' c G such that (G n R c G'
T h 2 T T

and Re(w(h,t)) > 0 for (h,t) e G'. Thus (h,t)- = is
T Vh, t) Fh-ht7

analytic on G', from which It follows that (9) Is holomorphic on G' asT

well. Assuming that (10) Is valid, Theorem 1 is proven.

In the process of determining the Taylor expansion of X(h,t) in powers

of h about h = 0, we develop a similar expansion of the elgenfunction

0(.,h,t). In section 5 (see (45)), we show that @(.,h,t) can be chosen so

that It depends holomorphically on (h,t) e G . The Taylor expansion ofT

A(h,t) and *(-,h,t) In powers of h will be obtained next, by expanding

the elgenvalue equation (5) in powers of h and equating the coefficients of

like powers.

9



Upon setting

@0O E P, (y-(y q-(y) dy
1p,q=i Ya q p

n
(i1) 2l(t)[O,v] ifS E a p(y)(q(y)t- (y)t q - -- (y)v(y)tp)dy

p° q
@2t)Ov]=._ C_ y)t t~ +

for all * and v in H Cps) and for all t e Cn, it follows from the
per

definition of 0(h,t) that

(12) (h,t) = "0+"l th+ 2(t)h

n n k
Substituting the expansions A(h,t) = Xk(t)hk, 0(.,h,t) = E 0(.,t)h , and

k=O k=O

(12) into equation (5), equating like powers of h, and noting that Xo(t) =

A(O,t) = 0, the following system of equations is derived:

(13) k =0
Al1k -t)v (t)fsOo(Y~t)v-T-dy - 0l(t)I[0o(,t),v], k =1

@O[@k(Pt),v]

k z
E At(t)Js kt(Y't)vTdY - E @t(t)[Ok-t(',t).v]. k -> 2,

for all v E Hir(S). Successively solving the equations in (13) will yieldper

formulas for the Ak(t) and 0k(.,t).

The method of solving (13) will be based on Lemma 6, below. First note

that

(14) 0001,11 = "01,0] = *1(t)[1,1] = 0

for all 0 E Hlr(S) and for each t E C

Definition 5. W a iv e HI (S) : Jsv(y)dy -0.
per fS

10



Each function in H1 (S) can be represented uniquely as the sum of aper

constant function and a function in W.

Lemma 6. I.ll is a norm on W, and there exists a constant K such that

10o0[O,v]1 :5 KlJ lll 1 V

0 0[v'v] IV 2€o[V'V 1
lv1 1

for all 0 and v in W.

Each equation In (13) is of the form

0[@k,v] = Fk(V) for all v e H S(S),

In which F is a conjugate-linear form on H1  S) which depends on t;

k per

AI(t), ... Ak(t); and V 0(.,t).... 'kl(,t). Furthermore, Fk Is bounded on

H (S). It is also bounded on W, as a result of the closed graph theorem
per

(see (31)). A consequence of (14) Is that we must ensure that F k(1) = 0,

which will determine Akt) uniquely. Then Lemmas 3 and 6 imply that

Ok(.,t) Is determined uniquely as an element In W, that is, up to an addi-

tive constant. However, the arbitrary constants in 0k(.,t) will remain

essentially arbitrary because, being an elgenfunction, 0(.,h,t) is uniquely

determined up to a multiplicative constant only.

Theorem 7. For k a 1, define functions ik(.,t) e W according to

(15) '- (t)[1,v], k= 1

0-¢(t)[1(,t),v] - 2 (t)(1,v], 
k= 2

k-1 2
E A.(t)J i kj(y,t)v-(yTdy - = 0 1 (t)Eik-j(.,t),v], k 2 3,

Lj=2 fS j=1

for all v e W, where

11



0, L= 1

1 ( 1 (t) ',t),l) +=2(t)[11]), t 2
(16) AL(t) = 2x)

0 Ct)! - 2t-

Next, define 0e(.,t) e H S(S) for t 2 0 by

per

'o 0)M t= 0

(17) Ot (.,t) = I.-1
Ef (t)i C.t) +f (t), f 2 1,J=0 J -t

in which each f Is a holomorphic function (in a neighborhood of t = T)

and f0 t) * 0 for all t. Then (16) and (17) solve (13).

Proof. Upon solving (13) with k = 0, we have that 0 0 (.,t) must be a

constant function, which we denote by f0 (t) and which we assume is non-zero

for each t because f 0t)-00(.,t) = 0(.,0,t) is an eigenfunction.

In order to simplify notation, we will drop the dependence on t In the

remainder of the proof.

For k = 1, (13) becomes

0[Vlv] = AfO[ v~y)dy-f 0 [1,v] for all v E H (S)."01iv '1O i 0 1 per
"S

Setting v = 1 and using (14) yields 0 = 1f 0(2w)n , which Implies A = 0

because f0 0 0. Now (13) with k = 1 can be reduced to

-001,v] = -f 001 (1,v] for all v e W,

the solution of which Is given by (17) with t = 1.

Substituting (16) and (17) Into (13) with k = 2, yields

12



0b02,vl = X2f0 [vy dy- (fop0,02[f 1 $1 t1v1)-f (1,vl

for all v e H 1  (S). Again, set v = 1 and use (14) to obtain 0

per

A2f0 (2w)n -f 0 (
[0 

1(,
] +0 1(1,1]). Since f0  0 , the solution to this

equation Is given by (16). Now (13) with k = 2 can be reduced to

E 2 ,vl = -fO(0[1lv] +0[1,v1) -f ll[1,v] for all v E W,

and the solution to this equation is given in (17).

An induction argument, similar to the one we will use In the proof of

Theorem 15 establishes the remaining formulas in (16) and (17). 0

As we noted earlier, the arbitrary nature of the constants fe(t) can be

traced to the fact that the eigenfunction q(,h,t) is determined uniquely,

up to a multiplicative constant, only. To see this, let c(h,t) = ck(t)h
k=O

be analytic in h and t, with c 0t) * 0, and define

k

fk(t) = l(t)fkl(t), k 0
t=O

and

-ro(t), k 0

O~k(-,t) = -k-1

E k f {E Wikj(Pt)+f k(t), k 2 1.
L=0

k
Then O k(,t)h Is the power series expansion of c(h,t)O(,h,t); clearly

k=O k0

the form of 0k Is the same as that of k"

We have shown that (10) Is correct, and consequently, the proof of

Theorem 1 is complete.

13



4. Expansion in powers of h.

The expansion of #(.,h,t) in powers of h can be determined formally

by expanding (3) in powers of h and equating like powers. This formal pro-

cess is valid because hi-4#(-,h,t) e H Ie(S) Is holomorphic at h = 0 for
per

each t e Cn  such that (O,t) E G (see Theorem 1), and because V(h,t)[0,v]

is a polynomial in h and t for fixed q and v in H1 (S). By
per

substituting

(18) 0(.,h,t) = Z'k(,t)hk

k=O

and (12) into equation (3), the following system of equations for the coeffi-

cients *k(-,t) is obtained.

(19) 0, k 0

.01 (t)[0 0(',t),v], k =1

0 k= 1O0 [k(-,t),v] =

fs v(y)dy - t1(t)[0k-l(.,t),v] - t2 (t)[0k-2 (.,t),v], k = 2

l-1(t)[0 k-l (-,t),v- 92(t)[1k-2 (-,t),v], k 3

for all v E H I(S). The radius of convergence of (18) depends on t, and
per

each coefficient *k(-,t) is In H1  (S) and depends holomorphically on t.
k per

The method of determining each Ok is similar to that used in the proof

of Theorem 7 to determine the Taylor expansions of hi-4A(h,t) and

hI-40(.,h,t). Recall that W is the subspace of H 1(S) of functions that
per

have an average value of 0. A consequence of (14) is that the right-hand

side of (19) must be equal to 0 when v = 1. On the other hand, restricting

v to be in W, Lemmas 3 and 6, applied to (19), uniquely determine *k(,t)

as an element in W (i.e., up to an additive constant), in terms of
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Ok-1(-,t) and 0 k-2C(,t). Then ok(-,t) becomes uniquely defined as an

element in H 1(S) by requiring the right-hand side of the equation forper

Ok+2 (*,t) In (19) to be 0 when v=i1.

Theorem 15. For each k a 1 define xk(-,t) e W to be the solution of

(t)[ Mi'vl, k = 1

(20) 00[Xk( *,t),v] = -01(t)[x 1 (.,t),v] -02(t)[ 1'v], k =2

L - 1 IX -1(.'t).V] 02 ()X k-.2 (,t),vI, k 2: 3

for all v e W, and for each k a 0 define g ktM E C by

(21) (2,)' k =

1 MI (,t), 11+0 2(t)[111, ]k

Then the coefficient of hk in (18) is given by

[g0 (t), k = 0

(22) Ok(')t) = k-i

Proof. Throughout this proof we will suppress all dependence upon t. First,

each X k Is well defined in WJ by (20) because of Lemmas 3 and 6 and because

each right-hand side In (20) Is a bounded conjugate-linear form on W (see

(30) and (31)).

It follows Immediately from (19) with k = 0, that 00Is a constant

function, which we denote by go. For k = 1 In (19), we now have

0 109v)= -g 0 1 ,v1 for all v e H 1  CS).0 0 1per
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Since 1 [1,1] = 0 (see (14)), the solution 01 has the form of (22); X

is defined by (20), but g0  and g are arbitrary constants.

We next consider k = 2 in (19), and substituting (22), we obtain

(23) 0[ 2, v] = i v--dy- (gOl[XlV] +gl-l[1,v])-go 2[1,v]

for all v e H (S).per

Setting v = 1 and using (14) yields

0 = 0[02,11 = (21)n-go(@l[Xtt] +@2(1,1])

Solving for g0  yields (21) with k = 0. On the other hand, requiring v to

be in W, and using (20), gives

00 = -g0 (Dl[Xlv] +02t1,v])-g 1 @1t1,vI

= g0 0 o 2,v] +g 1 0xvl,

which can be solved easily for 02 as a function in W. Thus, 0 is com-

pletely determined as in (22), whereas 01 and 02 have the form of (22); we

have yet to show that g, and g2  have been correctly defined.

Now let k 2 3, and assume that 0.... qk-3 are given by (22), and

that *k-2 and Ok-1 have the form of (22). That is, we are certain that

go. . gk-3 are correctly defined in (21), but are not sure about g and

gk-l" We with to show that gk2 is correctly defined in (21) and that Ok

has the form of (22). Making use of our assumptions, (19) becomes

k-3

@O(0k,vI g(0 1Ezk 1 -jv] +92 [xk 2 -jvI)

J=O

- gk-2(0@1[1Xv] +0 2[ 1,v]- gk610l[1,v].

16



Setting v = 1 yields

k-3

0 0kl] = -2gJ(: 1[X(k_2)+1_j v] + 2[X(k12)_j,1])- go-- 5k-2'
J=O

which can be solved for gk-2' and thus obtaining (21). Finally, upon

requiring v to be in W, it follows from (20) that Ok has the form given

in (22). o

Next, we sufficiently investigate the properties of the expansion of

#(.,h,t) in powers of h, to be able to prove Lemma 12 in (8]. The results

are stated here in Theorems 16 and 18.

We begin by determining the dependence on t of X1 (*,t). Expanding the

right-hand side of (20) with k = 1, accorrding to (11) yields

n= - IS napq(Y) 8vq(y)dy tq

q=1 p=l

for all v e W. Now define XI;q e W, for each q = 1,...,n, to be the

unique solution (cf. Lemmas 3 and 6) of

(24) 0 [X qvl IS J ~ao(y)L (y)dy for all v e W.

Sp=1q

Consequently,

n

(25) 1 .,t) = i -i ;qtq'

q=1

Note that XI;q is a real-valued function because the same is true for each

a pq. Furthermore, it follows from (24) and the definition of 00 that

(26) vX;q+Yqiv] = 0 for all v e W.
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The following formula for g0(t) can be easily obtained by substituting

(11) and (25) Into (21):

(27) go(t) n I

E A t t +AOp,q~ crl q p

where

A0 r 1 ra 0 (y)dy(0(2w)' n(28))
( 2 8 ) 1 S n ( Y ) _ ~ ) ) y

A ( (y)+ E aC
(27) n  r=1 pr r

Theorem 16. A0 E R, Atp e R, AU = A pq, and 0 < g0 (t) :Sl71t 12+7,0 for

n

Proof. A0  and fA iq : pq = 1,... ,n} are real numbers because each Inte-

grand in (28) is a real-valued function. It follows from the definition of

*0 and from the formula for A pq that

A pq =21) I0[1;q yq,

S(2w)n 0 q

and upon using (26) with v = X1;p we obtain

(29) A + +yp I for all p,q = 1,...,n.
CA (2w)n 01;q q' ; p

The symmetry of A follows from (29) (and (11)), since symmetry condi-Pq

tions are imposed on the coefficients a pl, and since each function involved

in (29) is real-valued.

An immediate consequence of (1) and (28) is A0 aZ 0. Next, define
n

g(y,t) - E tqyq. Then (25), (26), Lemma 6, and the fact that X1 .,t) is a
q--i

periodic function imply

18



n
E A pq t qt  _ 1 I . t . t), it - t) + {t)]

pq q 1 (2n)n 0p, q= 1

> - I -ix l(',t) +9C" t)l21

is)' n -1 ax (y,t) +t 1 dy
(2n) n ': ayp

Sp=1p

n
72__4 l t tp2 ny

(2 w)n y

p=1

2

Then, 1 2 v 1
iltjl2 +7 follows from (27). o

Next we prove

Lemma 17. There are positive constants n and 6 which are independent of

t e Rn such that

i#k(,,t)l <5 7go0tMe k (l+it1) k for each k a 0.

Proof. After stating a few preliminary results, the proof is presented in

three steps. First, an upper bound for lXk(,t)li is derived from (20).

This result is then used with (21) in order to obtain an upper bound on

Igk(t)I. Finally these two bounds and (22) will give an upper bound on

i0k( ' t) Il.

It follows from (11) that there is a constant c1  such that

(30) itk(t)[Ov]I < c1 (1+llt11) k11ll11VIlll for k = 1,2,

because the coefficients a0  and a p I are L -functions. The closed graph

theorem Implies that there is a constant c2, which we take to be larger than
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n/2

(2w) ,such that

(31) 11v111 : c 2 1VI 1  for all v e W.

We now have from (20) that

cc2 (1ltl lk = 1

12 2

10Ix (zk,t),v]I :5 -c c 2{(1tII)1X (*t)11 + (1+11t11) 2HvI1, k = 2

2
c 2 )IC t) IVIk 2: 3.

Ic J=1

Lemmas 3 and 6 imply

c Ci1+h1t1l), k = 1

Ixk .t~ : C U (1l1+ (1+1tI))(1+1tI), k =2

P3 (X k1 (1t~ 1+(1+hltI)xk-2 (,t)l 1)(1+11t1I), k :3

2

in which c3 - - An Induct ion argument proves

3 
k1

(32) Ix k (,1h1 - (c 3 1)k (1+11th!) kfor k = 1,2,.

Next, using (30), (31), and (32) In (21) yields

g()k-I

(2w )n =

2 (C+)k-1
cc 1 2 3)-Ot)11t1 2 Z g~k -c,,kj(+tlkj

(2w)n =

for k k 1. A consequence of Theorem 16 Is that this last Inequalily can be

rewritten as
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k-1

Igk tMi : c4 2Ilgj(t)l(c 3+1)k-J(+Iltil)k
- j for k 2 1,

J=O

where

2c Cc (c+2)
1 2 3C4 =.

(2) nin{ 0 71I}

Another Induction argument then proves

(gk(t)I : go(t)(c 3+1) k(c 4+1k (1+11t{)
k  for k a 0.

Finally, substitute (32) and (33) into (22) to obtain

k-i
1100('t)11l S Dg0(t"2c3+l )k( c4+1) J(l+lll)

k

j=o

+g 0 (t)c2 (c3
+1) k(c4+) (1+11t)

k

C 2g0(t)(c3+)k(c4 +2 )k(+lt) k ,

which finishes the proof. 0

By computing a majorizaing series for (18), the next theorem Is a conse-

quence of Lemma 17.

Theorem 18. Let n and e be given as in Lemma 17, and suppose h > 0 and

t Rn satisfy e(1+hItll)h < 1. Then

Cgo(t)

and

' li g0 (t) k
kTek1_g__ k+1 k+1

jjl(.,hjt)-j~j("t)hjjjj S 1-e(1+UithI)h (+11tl1) h

J=O

for k k 0.
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5. Appendix.

In this section we develop some of the theory that was used in section 3,

when making some of our analyticity claims. The main goals here are Theorems

19 and 29. Throughout this section, we make the following assumptions. Let

V and H be separable, complex Hilbert spaces in which V is a compactly

and continuously embedded dense subspace of H. We denote the associated

inner products by (,)V and (",) H' and the associated norms by I"11v

and 1111H . Let G be an open set in Cn, and consider a family of sesqui-

linear forms O(z) : VxV--+C, defined for each z e G. Suppose that there

are real-valued functions M,7, and pi defined on G such that M(z) > 0

and T(z) > 0 for z e G, i is continuous on G, and for each z e G

(34) I0(z)(,v]I < M(z)IOIIVI1vfVv for all 1 and v in V

and

(35) T(z)1viI1 < Re(C(z)[v,v])+p(z)Ivj 2 for all v e V.

Furthermore, suppose that zi--e(z)[O,v] is analytic on C, for each

and v in V.

For a given w e H, we want to determine the dependence on z, in par-

ticular situations, of O(z) e V, which satisfies

O(z)[O(z),v] = (w,v) H for all v e V.

In so doing, we will consider the elgenvalue problem: seek A(z) e C and

O(z) e V such that

O(z)[O(z),v] = A(z)(O(z),v) H for all v e V.

Let a e G. If 0 is not an eigenvalue of 4(a), then we will show that

O(z) exists for, and depends analytically on, z in a neighborhod of a. If
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0 Is a "simple" eigenvalue of O(a), then we will show that A, with A(a)

= 0, is analytic in a neighborhood of a, and we will derive an expression

for O(z), exhibiting its dependence on A(z).

When z is one complex variable, many of the results of this section can

be found in [51. An important difference is that we have imposed alternate

conditions ((34) and (35)) on O(z). This allows us to conclude that 0 is

analytic with values in V, rather than in H, which is the conclusoin in

(5].

At this point we want to give a definition of analyticity, or holomorphy,

for Banach space valued functions of several complex variables. Several defi-

nitions are possible. In a setting more general than Banach spaces, three

definitions are stated and proven to be equivalent, in chapter III of [4].

First an open polydisc A(a,p) in Cn with center a and multiradius p s

(pp .... Pn)  where 0 < Pj < m, is defined by

A(a,p) a jz e Cn Izj-ajI < p for j = 1,...,n .

Definition 19. Let W be a Banach space, and recall that G Is an open set

in Cn . A function w : G--.W is analytic, or holomorphic, If for each a e

G there is a polydisc A(a,p) c G and a set of coefficients {w (a) : a is

a multi-index} c W such that E w (a)(z-a)a converges in W to w(z)OfIaI a

for each z E Aa,p).

We will have several occasions In which the next two lemmas will be used.

When n = 1, proofs can be found In [5], and for the general case they are

prove In (7]. Let H and H2  be two separable, complex Hilbert spaces and

denote the inner product on H2  by ("',)2* Denote the space of bounded

linear operators mapping H1 into H2  by B(HIH2
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Lemma 20. Let T(z) e B(HI,H2 ) for each z e G. The following statements

are equivalent:

i) T : G->B(H,H 2 ) is holomorphic;

ii) T(.)o : G-+H2  is holomorphic for each 0 e H1;

iII) (T(*)O,v)2 : G-+C is holomorphic for each 0 e H and v E H2 .

Lemma 21. Suppose T :G-*B(H1 ,H 2 ) is holomorphic, and let a e G. If

T(a)- e B(H2,H1 ), then there exists a neighborhood Ga c G of a such that

T(z)- I exists for z e G 1 and T(*)- : G1--+B(H2 ,Hi) is holomorphic.

We are now ready to state and prove the results on which the main

theorems of this section are based. We begin by showing that there exists a

closed operator T(z) : D(T(z)) c V--+H such that 0(z)[0,v] = (T(z)o,v)H

for all 0 e D(T(z)) and v E V. The next theorem gives one way of con-

structing such an operator, which will be convenient for us In what follows.

Other forms of this representation theorem can be found in [5] and (6]. See

also [21 and (9].

Throughout this section, we will denote the domain and range of an opera-

tor T by D(T) and R(T). Also, in the next theorem only, the dependence

on z as we have stated so far, is inconsequential, and so we drop it.

Theorem 22. Let I : VxV--C be a sesquilinear form for which there exist

real constants M > 0, z > 0 and p such that

(34') 0(1[,v]I 5 MIl#IlVllvllV for all 0 and v in V

and

(llv 2 < R(O[v,v]) + llvll 2 for all v E V.V H

Then there is a unique closed operator T : V--+H such that

I) D(T) is dense in V;
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ii) 0[0,v] = (TO,v)H for all 0 e D(T) and v e V; and

iii) given e e V and w e H, if *[O,v] = (w,v)H for all v in a

dense subspace of V, then 0 E D(T) and To = w.

Proof. Uniqueness follows from (iii); let there be another closed operator S

such that O[O,v] = (SO,v)H for all 0 E D(S) and v e V. Then 0 e D(T)

and TO = S.

Since the embedding of V in H is continuous, it follows from the

Riesz representation theorem that there is a linear operator F e B(H,V) such

that

(w,\7)H = (Fw,v)V for all w e H and v e V.

Furthermore, F is a 1-1 map, and RCF) is dense in V.

Next, it follows from (34') and (35') that 0[",]+ A(",)H# as a ses-

quilinear form on VxV, satisfies the hypotheses of Lemma 3. From the dis-

cussion that follows Lemma 3, it follows that there exists an operator A e

B(VV) such that A-1 e B(V,V) adn 0[0,v] + p(,v)H = (A O,v)v for all 0

and v in V. Now define

D(T) a {€ E V : A e E R(F)}

and set

T = (F- A -gI)D(T)'

in which I is the identity operator on H.

Clearly the choice of ji in (35') is not unique. That the definitions

of D(T) and T are independent of # can be seen, as follows. Let A' *

be a real number for which (35') remains valid when W is replaced by p'.

(The value of 7 > 0 makes no difference.) The definitions of A and A ,

imply
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(A A /Ov)ViL'(FOIv)v = ( ~)V (Ov

for all *and v in V. Thus

(A ,-A'F)O (A -jiF)O for all 0 e V,

from which It follows that A 11 e R(F) If and only If A A 0e R(F, and that

T =(F _A1 A iI)I D(T) = (F _1 11 -ps'I ' D(TY

Since A Ais an Isomorphism on V and R(F) Is dense in V, it

follows that D(T) Is dense in V, which proves (1).

Statement (11) follows from the definitions of A and T.

To prove (111), let 0 e V and w e H such that OCO,v] = (w, v) Hfor

all v in a dense subset of V. Then

(A 11OpFO, v)V = *[Ov] = (W~v)H = (Fw,v) V

for all v In a dense subset of V, which implies A A - gFO Fw so that

e D(T) and To w.

Finally, T D(T) c V--4H is a closed operator because A- F e B(H,V).o
As

Noting (34) and (35), Theorem 22 Implies the existence of a unique closed

operator T(z) :V-- H for each z e C, such that D(T(z)) Is dense In v;

O~z(0v]= (T(z)o.v) H for all 0 e D(T(z)) and v e V; and for any w e H,

(36) T(z)o = w If and only if O(z)(0,v] = (w,v) H

for all v In a dense subset of V.

Since T(z) :D(T(z)) c V-. H is closed, the resolvent operator R(C,z)£

(T(z)-C)- belongs to B(H,V) for each C e p(T(z)), the resolvent set of

T(z). A consequence of (34), (35), (36), and Lemma 3 Is that p(T(z)) con-

tains I< e C :-Re p g(z)). A standard1 result In the spectral theory of
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operators is that p(T(z)) is an open set in C. In Theorem 24 below, we

will prove that

(37) a I (Cz) e C n1 e p(T(z)) and z e G)

1r' an open set also, and that R : -*.B(H,V) is holomorphic.

First we prove a preliminary result.

Lemma 23. For each a e G, if C e p(T(a)) then there exists a neighborhood

G a c G, of a such that

i) e p(T(z)) and R(C,z) e B(H,V) for all z e G a, and

Ii) zi-4R(C,z) e B(H,V) is holomorphic on G *

Proof. The continuity of p allows us to choose a neighborhood G c G of

a, and a number p a 2: j(z) for z e G a; that Is,

7 (Z)I11vAI2 : Re(O(z)(Cv, v]) +#A 11i

for all v e V and z e G a We will first prove the lemma for -p = a and

then use the identity

(38)(T~)-Cr(-a z) ='H- (C+"La)R(-iL ,z) for z E G a'

to prove the lemma for arbitrary C e p(T(a)).

As In the proof of Theorem 22, associate an operator A a(z) e B(V,V) to

O(z) such that

(39) O(z)(Ov1 +A~a ,'v)H = (A aZ)Ov)V

for all 0 and v In V. It was shown there that while A a(z) depends on

the choice of pa, A a(z) -14aF does not depend on p , where F e B(H,V) Is

defined by (Fw,v) V = (w,v) Hfor all w e H adn v e V. Furthermore,

-1foD(T(z)) = e V :A a(z)o e R(F)} and T(z) = (F A a(z)-Aa)I forz)

z e G a Consequently, T(z) +Aa = F_ A (z W1DTz)Is a one-to-one map of
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D(T(z)) onto H, and it follows that -Aa E p(T(z)) whenever z E GI.

According to Lemma 20 and the hypothesis that z -- t(z)[O,v] is analytic, it

follows from (39) that A G G --+B(V,V) is holomorphic. Since A (z) ea a a

B(V,V) for each z in Ga Lemma 21 implies that A a(.) -  G -B(VV) is

holomorphic. Therefore zi-R(- ,z) = A a(z) F e B(H,V) is holomorphic on

G .
a

Now, e p(T(a)). When z = a, the left-hand side of (38) is a one-to-

one map of H onto H; hence its inverse exists and belongs to B(H,H). As

a function of z with values in B(H,H), R(- az) is holomorphic on Ga

because it is holomorphic as a function with values in B(H,V) and because

the embedding of V into H is bounded. Thus the right-hand side of (38),

as a funciotn of z with values in B(H,H), is holomorphic on Ga, and its

inverse belongs to B(H,H) when z = a. According to Lemma 21, there is a

neighborhood Ga c Ga of a on which

ze--)(I-(C+Aa)R(-Aa,z))-I 1 B(H,H)

is holomorphic. Therefore, e E p(T(z)) for z e Ga, and the holomorphy of

z e G a- R(C,z) = R(-pa, z)(I-(C+ga )R(-ga, z))1 e B(H,V)

follows.

Theorem 24. The set 9, defined by (37), is open in Cn+1, and

(C,z) -4R(C,z) e B(H,V) is holomorphic on 9.

Proof. Let (va) E 9. This proof is essentially a careful repetition of the

second part of Lemma 23, with n replacing -1a" Lemma 23 implies that a

neighborhood Ga7 c G of a can be found such that n e p(T(z)) for z e

Ga, and zi-+R(n,z) E B(H,V) is holomorphic on Ga . Analogous to (38),

we have
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(40) (T(z)-)R(,z) = I-(C-7i)R(7, z) for z E Gq

Now the right-hand side of (40), as a function of ( ,z), with values in

B(H,H), is holomorphic on CxG and takes on the value I when (C,z) =

(71,a). A consequence of Lemma 21 is that there is a neighborhood 1 c CxG

of (h a) on which ( ,z) --(I-(4 - )R(iz))I e B(H,H) is holomorphic.

Hence, C e p(T(z)) for ( ,z) E ga which implies that 9 is open. It

follows that

-1
(C,z)&- R(,z) = R(q,z)(I- -?)R(Tz)) E B(H,V)

is holomorphic on 9 . 0

The enxt corollary states a condition on the family {W(z) : z E G}

which guarantees that the operator T(z) is self-adjoint if z e G A Rn.

Corollary 25. Suppose that z = (zi .... zn) e G whenever z e G. If

(z)[v,o] = O(z)[O,v] for all 0 and v in V and for z E G, then T(z)

= T(z) for all z e G, in which T(z) is the adjoint of T(z) as an

operator on H.

Note that R(C,z) is compact as an operator on H, when C e p(T(z)),

beacuse R(C,z) e B(H,V) and V is compactly embedded in H by hypothesis.

Consequently, the spectrum of T(a) consists entirely of elgenvalues that

have finite multiplicity and no finite accumulation point.

Recall that given w e H, we want to determine the existence and the

dependence upon z of the solution O(z) E V of

O(z)[O(z),v] = (w,v) H for all v e V.

It follows from (36) that this is equivalent to solving T(z)¢(z) = w. When

0 is not an eigenvalue O(z) = R(O,z)w. Lemma 23 yields

29



Theorem 26. f :z e G : 0 E p(T(z)) -V is holomorphic.

When 0 Is a simple elgenvalue, we have the following result.

Theorem 26. Let a e G and suppose 0 is a simple elgenvalue of T(a).

Then there exists a neighborhood G c G of a and two functions X anda

z i-P(z) e B(H,V), which are holomorphic on Ga , such that A(a) = 0, X(z)

is a simple elgenvalue of T(z), and P(z) projects H onto the

1-dimensional eigenspace that corresponds to A(z). Furthermore, there exists

another holomorphic function z e G a-*R 2(O,z) E B(H,V) such that

a 2(41) ~()= x PzwR(0, z)w

for all z e G for which A(z) * 0.
a

The remainder of this section will be devoted to the proof of Theorem 27.

The theory concerning the eigenvalue problem associated to T(z) is well

developed (cf. (51). In fact, the form of O(z) in (41) is a direct conse-

quence of that theory. We repeat here many of these ideas in the process of

proving the conclusions about analyticity.

Since the spectrum of T(a) is a discrete set of elgenvalues having no

finite accumulation point, a Jordan curve 1 can be drawn in p(T(a)) so as

to enclose an open set in C containing 0 in its interior and the other

elgenvalues in the exterior of its closure. Then Ixfa) c 9, where I is

the open set defined by (37). Hence, for each C e C there is a disc

D(C,r(C)) c C, (r(C) > 0, is the radius) and a polydisc A(a,p()) c Cn

such that

(C,a) e D(C,r(C])xA(a,p(C)) c 9.

However, 9 is compact, so a finite set fC E c : J = 1.... ,k can be

chosen such that D(Cj,r()) : j = 1,...,k) covers 1. Consequently, 9 c
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k
p(T(z)) for z e G' n A(a~p(C~)

a j= 1

Next the operator P(z) is defined for z e G' as a Riemann integral of
a

B(H,V)-valued functions by

(42) P(z) * JR(Cz)d .

It Is shown In [5] (Theorems 111-6. 17 and VII-1.7) that P(z) Is a projection

operator and that P(a) maps H onto M 1(a), the 1-dimensional eigenspace

associated with the elgenvalue 0 of T(a). Moreover, H can be decomposed

as H =M (z) +ML(z) for z e G', in which1 a

(43) M 1 (z) 5 P(z)H and M.2(z) a (I-P(z))H.

It is also true that P G'--*B(H,V) is holomorphic because, by Theorem 24,
a

the same Is true of R 9--*B(H,V). Since dim(M 1(a)) = 1, and since

P :G'-*.B(H,H) is continuous (recall that V is continuously embedded ina

H). it follows from [5] (paragraphs 1-§4.6 and IV-§3.4) that

(44) dim(M1(W) I for z e G'.1 a

Now let *a = M 1(a) and non-zero, and define G ato be an open

connected subset of G' such that a e G and (P(z)Oa,Oi ) * 0 for z e Gaa a a

Next, define

(45) O'(z) a PWz) a for z e G a

and it follows that ~, G a--4V Is holomorphic with ##(~a) = a

It follows from paragraphs 111-§5.6 and 111-§6.1 of [51 that for z e Ga

P(z)v e D(T(z)) for all v e D(T(z)),

and
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T(z)v e M.k(z) for v e M.k(z) n D(T(z)) and k =1

Thus T k(Z) :M.k(z)-4+Mk(z) for k = 1,2, and for z e G acan be defined by

T k(z) a TWzI M,(z).(T(z)). The elgenvalue problem has now been decomposed

Into two elgenvalue problems, one for each T C z)in kz) ofprcua

interest here Is the eigenvalue problem for T 1zW, because 0 and 0 form

an eigenvalue-eigenfunct ion pair for T 1 a.

According to (44), T 1(z) Is a 1-dimensional operator. Therefore, A(z)

*trace(T 1z)) is the eigenvalue of T (z), i.e., for each z e G a

(46) T(z)Oa = Tl(z)oz A(z)Oz for all Oz e Mi(z) n~ DCT(z)).

In (48), setting Oz = PWz) a and taking Inner products In H with vla'

yields(T)Pz,)Hfo eG

(47) A(z) = (zP(z)o a 0 )Hfo zeG
(Pz a'oa)H a

Since T(z) Is a closed operator, It follows from (42) and the Identity

T(z)RUi,z) = I+ <RC,z) that T(z)P(z) = --Lf R(,z)d<. Consequently,

z i-.TWzPWz e B(H,V) is holomorphic on G (c G'). Therefore, the analy-a a

ticity of A on G follows from (47) because G awas chosen so that

(P(z)Ov ,O,) * 0 when z e G a Since It c p(T(z)) for all z e Ga, A~z)

lies In the Interior of the open set enclosed by ~,whereas the remainder of

the spectrum of T(z) must lie In the open set that Is exterior to V.

Let z e G asuch that X(z) * 0. Then R(O,z) exists and commutes with

P(z). Consequently, we can define R.k(O~z) e B(H,V) for k = 1,2, by

R 1(0, z) a (R(0,z)P(z) = P(z)R(O,z),

and
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R 2(O,z) a R(O,z)(I-P(z)) = (I-P(z))R(O,z).

By passing R(O,z) under the integral sign in (42), then using the resolvent

equation to otbain R(O,z) -R(<,z) = - R(O,z)R(<,z) when 0 and < are in

p(T(z)), and noting that 0 lies inside the open set enclosed by C,

(48) R(O,z)P(z) = R(Oz)-W-1 R{'Z)dC

is obtained for each z e G such that A(z) * 0. However, 1 c p(T(z)) fora

all z e G a so that the second term on the right-hand side of (48) is holo-

morphic as a function of z on G with values in B(H,V). Consequently,a

zt-4R 2 )9,z) e B(H,V) can be continued analytically to all of Ga.

Finally, it is clear from (43) and the definition of R1 (O,z) that

R (Oz)w E M 1(z) n D(T(z)) for all w e H and for each z e G such that

A(z) * 0. Then (46) implies

Az)R (O,z)w = T(Z)R (O,z)w = T(z)R(O,z)P(z)w = P(z)w,

from which R (0, z) w = 1t
1 ROr-P(z)w is obtained from all w e H and for each

z e G such that A(z) 0 0. This finishes the proof of Theorem 27 because

O(z) = R(O,z)w = R1 (Oz)w+R2(0,z)w when A(z) * 0.
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